线性回归和岭回归模型分析以及保存与加载模型
首先来个最简单的线性回归的例子:
sklearn.linear_model LinearRegression x=[[,], [,], [,], [,], [,], [,], [,], [,]] y=[,,,,,,,] e=() e.(x,y) coef =e.coef_ (,coef) (,e.([[,]]))
然后来个 详细点的 线性回归,岭回归例子,包括 模型的保存和加载:
sklearn.linear_model LinearRegression, Ridge, RidgeCV, Lasso sklearn.datasets load_boston sklearn.model_selection train_test_split sklearn.preprocessing StandardScaler sklearn.metrics mean_squared_error joblib (): boston = () x_train, x_test, y_train, y_test, = (boston.data, boston.target, =) transfer = () x_train = transfer.(x_train) x_test = transfer.(x_test) e = () e.(x_train, y_train) y_pre = e.(x_test) (, y_pre) score = e.(x_test, y_test) (, score) ret = (y_test, y_pre) (, ret) (): boston = () x_train, x_test, y_train, y_test, = (boston.data, boston.target, =) transfer = () x_train = transfer.(x_train) x_test = transfer.(x_test) e = (=(, , , , )) e.(x_train, y_train) y_pre = e.(x_test) (, y_pre) score = e.(x_test, y_test) (, score) ret = (y_test, y_pre) (, ret) (): boston = () x_train, x_test, y_train, y_test, = (boston.data, boston.target, =,=) transfer = () = transfer.(x_train) x_test = transfer.(x_test) e = joblib.() y_pre = e.(x_test) (, y_pre) score = e.(x_test, y_test) (, score) ret = (y_test, y_pre) (, ret) __name__ == : ()
# 欠拟合: 训练 测试 都不好; 一般是学习数据的特征过少
# 过拟合: 训练不错,测试不好。一般是特征过多,存在嘈杂特征。 重新清洗数据,增加训练数据量,正则化,降低维度。
# L1正则化: 一些W的值直接为0;删除这些特征影响 lasso 回归
# L2正则化: 使得一些W的值很小,接近0 ,降低某些特征的影响,岭回归 Ridge
# ElasticNet 是 Ridge(r=0) Lasso (r=1)的综合
# from sklearn.linear_model import Ridge,,Lasso
# 模型的保存和加载
# from sklearn.externals import joblib 已经取消 直接 import joblib 就行
# 训练完成 保存
版权声明本文仅代表作者观点,不代表本站立场。本文系作者授权发表,未经许可,不得转载。图文来源网络,侵权删!